

January 24, 2020

Justin Good, P.E. Transportation Development Engineer – Lead (South) Transportation Development Services Division Austin Transportation Department 901 S. MoPac Expressway, Building 5, Suite 300 Austin, TX 78746 (512) 974-1449 justin.good@austintexas.gov

Re: 218 South Lamar Boulevard Transportation Impact Analysis Update

Dear Mr. Good,

It has come to our attention that the proposed development at 218 South Lamar Boulevard (Project) has had changes to its development plan as compared to that assumed in the previously-approved TIA (January 2019). This memorandum summarizes those changes, analyzes differences as compared to the approved TIA, and determines if additional mitigation is required. As a point of reference, the previous TIA approval memo is attached to the end of this letter (**Attachment 1**).

Project Description

In the approved January 2019 TIA, the Project was proposed to be a combination of office space (167,000 square feet) and high-turnover restaurant (13,000 square feet). The Project has now been proposed to consist of 189,881 square feet of office space and 5,000 square feet of high-turnover restaurant. As such, an updated trip generation estimate was deemed necessary in order to accurately assess future trips generated to the site.

In addition to the change in intensities of the land uses, the approved TIA analyzed a potential site plan that had two driveway accesses to the underground parking garage:

- A full access driveway on Toomey Road
- A right-in, right-out driveway on South Lamar Boulevard

The revised site plan includes a right-in, right-out driveway on South Lamar Boulevard, but it would serve commercial loading/unloading only. As such, all trips assigned to and from the Project have been shifted to the Toomey Road driveway.

Project Trip Generation (TIA)

The ITE *Trip Generation Manual*, 10th Edition, was used for both the January 2019 TIA trip generation and the updated trip generation for the Project.

In the TIA, the Project was estimated to generate 3,181 net new daily external vehicle trips, with 294 occurring during the AM peak hour and 277 occurring during the PM peak hour. These values assumed a

Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 2 of 9

15 percent discount for people walking, biking, and taking transit for the office land use, a 10 percent discount similarly for the restaurant use during the peak periods, no discount for internalization between the mix of uses, and no discount for existing trips on the site. **Table 1** summarizes the trip generation included in the TIA.

Project Trip Generation (Update)

For the updated trip generation, the same codes and equations were used to determine the estimated trip generation. The revised Project is estimated to generate 2,685 net new daily external vehicle trips, with 246 trips occurring during the AM peak hour and 228 trips occurring during the PM peak hour.

Table 2 summarizes the trip generation for the updated Project per the TIA methodology. The daily trip generation estimate decreased 15.6 percent, the AM peak hour trip generation estimate decreased 16.3 percent, and the PM peak hour trip generation estimate decreased 17.7 percent.

Description	Landling	ITE	11	Daily	Week	day AN	l Peak	Weel	cday PN	l Peak
Description	Land Use	Code	Units	Total	In	Out	Total	In	Out	Total
Office	General Office Building	710 ¹	167 ksf	1,942	155	23	178	26	137	163
Services	High-Turnover Restaurant	932 ²	13 ksf	1,239	64	52	116	71	43	114
	Total			3,181	219	75	294	97	180	277

TABLE 1: TRIP GENERATION SUMMARY (JANUARY 2019)

Notes:

1. General Office (Category 710)

Daily: T = 13.68 * X * 0.85

AM: T = 1.25 * X * 0.85; 87% in, 13% out

PM: T = 1.15 * X * 0.85; 22% in, 78% out

Where T= number of vehicle trips, X = thousands of square feet (ksf)

2. High-Turnover (Sit-Down) Restaurant (Category 932)

Daily: T= 112.18 * X * 0.85

AM: T = 9.94 * X * 0.90; 55% in, 45% out

PM: T = 9.77 * X * 0.90; 62% in, 38% out

Where T = number of vehicle trips, X = thousands of square feet (ksf)

Source: Wantman Group, Inc., 2020.

TABLE 2: TRIP GENERATION SUMMARY (REVISED PROJECT)

Description	Land Use	ITE	Units	Daily	Week	day AN	l Peak	Weel	day PN	l Peak
Description	Land Use	Code	Units	Total	In	Out	Total	In	Out	Total
Office	General Office Building	710 ¹	189.881 ksf	2,208	176	26	202	41	145	186
Services	High-Turnover Restaurant	932 ²	5 ksf	477	23	19	42	26	16	42
	Total			2,685	199	45	246	67	161	228

Source: Wantman Group, Inc., 2020.

Project Trip Assignment

Attachment 2 shows the study area for the TIA. The locations shown in **Table 3** were assumed as the gateways for Project trips. The top section of Table 3 shows the assumed path for entering traffic for each gateway and whether there would be any change with the removal of the South Lamar Boulevard driveway. The bottom half of Table 3 shows the same information for exiting traffic.

Location	Distribution	Assumed Path to/from Project? ¹	Change for Project Traffic?
Entering Traffic			
Lamar Boulevard (north)	10%	SLB southbound to SLB driveway	Yes
South Lamar Boulevard (south)	11%	SLB northbound to Toomey and Toomey driveway	-
West 6 th Street	9%	SLB southbound to SLB driveway	Yes
West 5 th Street	15%	SLB southbound to SLB driveway	Yes
West Cesar Chavez Street (east)	16%	SLB southbound to SLB driveway	Yes
West Cesar Chavez Street (west)	19%	SLB southbound to SLB driveway	Yes
West Riverside Drive (east)	3%	SLB southbound to SLB driveway	Yes
Barton Springs Road (east)	9%	SLB northbound to Toomey and Toomey driveway	-
Barton Springs Road (west)	8%	Jessie Street to Toomey and Toomey driveway	-
Exiting Traffic			
Lamar Boulevard (north)	10%	Toomey driveway to Toomey and Northbound SLB	-
South Lamar Boulevard (south)	11%	SLB driveway to SLB southbound	Yes
West 6 th Street	9%	Toomey driveway to Toomey and Northbound SLB	-
West 5 th Street	15%	Toomey driveway to Toomey and Northbound SLB	-
West Cesar Chavez Street (east)	16%	Toomey driveway to Toomey and Northbound SLB	-
West Cesar Chavez Street (west)	19%	Toomey driveway to Toomey and Northbound SLB	-
West Riverside Drive (east)	3%	Toomey driveway to Toomey and Northbound SLB	-
Barton Springs Road (east)	9%	SLB driveway to SLB southbound	Yes
Barton Springs Road (west)	8%	SLB driveway to SLB southbound	Yes

TABLE 3: TRIP DISTRIBUTION – PATH CHANGES

Notes:

1. SLB = South Lamar Boulevard

Source: Wantman Group, Inc., 2020.

Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 4 of 9

As shown in Table 3, the removal of the South Lamar Boulevard driveway for garage access affects vehicles entering the site from the north and exiting the site to the south.

All <u>vehicles entering the site coming from the south</u> were already assumed to make a northbound leftturn at Toomey Road, which they will continue to do.

<u>Vehicles exiting the site heading to the north</u> were already assumed to make an eastbound left-turn turn to South Lamar Boulevard from Toomey Road, which they will continue to do.

Inbound traffic coming from Barton Springs Road from the west was assumed to come via Jessie Street and is unaffected. Outbound traffic going to Barton Springs Road was assumed to leave via the South Lamar Boulevard driveway will be affected (roughly five to ten vehicles per peak hour).

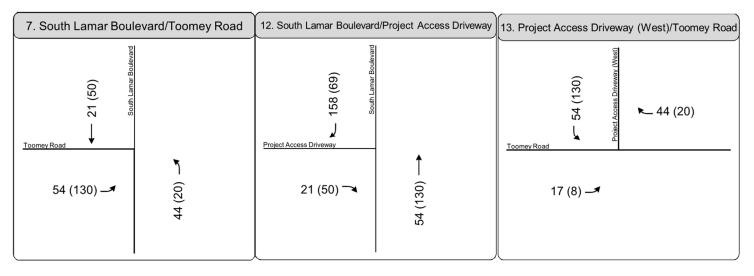
<u>Vehicles entering the site coming from the north</u> were assumed to make a southbound right-turn into the South Lamar Boulevard driveway; those vehicles will now have to continue south to Toomey Road, make a right turn and access the driveway on the north side of Toomey Road.

Similarly, <u>vehicles exiting the site heading to the south</u> were assumed to make an eastbound right-turn to South Lamar Boulevard; those vehicles will not have to use Toomey Road and head eastbound before making a right turn to South Lamar Boulevard.

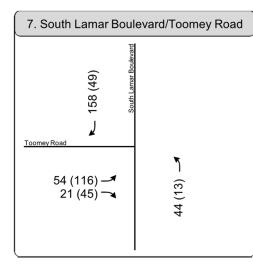
As a result, the only study intersections shown in Attachment 2 that would be affected by this change are:

- (#7) South Lamar Boulevard / Toomey Road
- (#12) South Lamar Boulevard / Access Driveway
- (#13) Toomey Road / Access Driveway

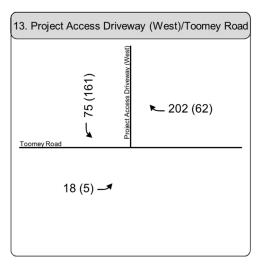
Intersection #12 no longer exists with the current proposal, but numbering will remain the same for consistency between documents. The following evaluates the updated trip generation, trip assignment, and anticipated traffic operations at these two locations with buildout of the Project.

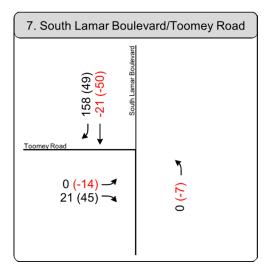

Project Trip Assignment and Build Volumes

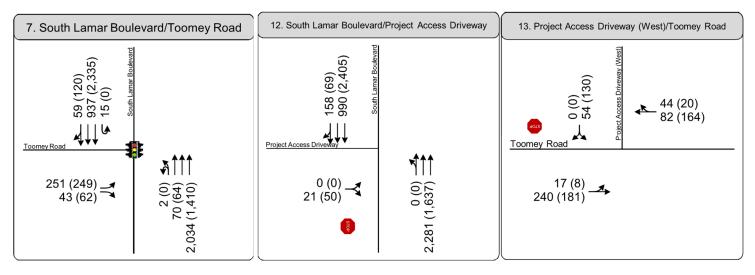
The volumes shown on the top of the following page (page 5) convey the trip assignment assumed for the study intersections mentioned above in the January 2019. Directly beneath that are the trip assignment volumes for the updated trip generation and assignment with the eliminated driveway.

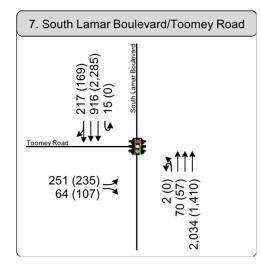

On page 6, similarly conveyed, are the build volumes for the 2019 TIA and the updated analysis.

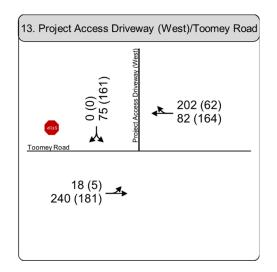
Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 5 of 9


Project Trip Assignment (2019 Analysis)


Project Trip Assignment (2020 Analysis)


Change (Black shows increase, Red shows decrease)




Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 6 of 9

Build Conditions (2019 Analysis)

Build Conditions (2020 Analysis)

Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 7 of 9

Build Conditions Operations

Table 4 shows the average vehicle delay, 95th percentile queue length, and volume-to-capacity (v/c) ratio for each movement and the overall intersection for both locations during the AM peak hour. **Table 5** shows the same information for the PM peak hour. As shown, there is minimal change as a result of the driveway elimination. The additional outbound vehicles are all right-turning vehicles at South Lamar Boulevard, which add minimal delay to the intersection.

Eastbound queues on Toomey Road specifically are expected to extend beyond Jessie Street. Mitigation options were evaluated for this intersection, which included:

- Signal timing adjustments for the (#7) South Lamar Boulevard / Toomey Road
- An additional eastbound left-turn lane on Toomey Road at South Lamar Boulevard
- The existing right-turn lane on Toomey Road could become a shared left-turn/right-turn lane

These improvements were not selected by ATD in order to prioritize vehicle progression along South Lamar Boulevard, as well as alternative modes (including transit stops and the off-street bicycle lanes). A conceptual design of the additional left-turn lane is included as **Attachment 3**. Synchro worksheets for both the 2019 and 2020 analyses are included as **Attachment 4**.

		2019 Analys	sis			2020 Analys	sis	
Location / Movement	Delay	95 th Percentile Queue (feet)	V/C Ratio	LOS	Delay	95 th Percentile Queue (feet)	V/C Ratio	LOS
(#7) South Lamar Boulevard / Too	omey Road							
Intersection	22.5	-	0.71	С	21.6	-	0.71	С
Eastbound Left-Turn	68.5	421	0.81	E	68.5	421	0.81	E
Eastbound Right-Turn	46.2	37	0.15	D	46.3	44	0.05	D
Northbound Left-Turn/U-Turn	4.3	9	0.13	А	4.6	9	0.14	А
Northbound Through	5.3	117	0.68	А	5.3	117	0.70	А
Southbound U-Turn	9.9	1	0.12	А	9.9	1	0.18	А
Southbound Through/Right-Turn	51.4	308	0.54	D	44.4	291	0.60	D
(#13) Toomey Road / Access Drive	eway							
Intersection	1.5	-	-	А	1.4	-	-	А
Eastbound Left-Turn/Through	0.8	1	0.02	А	1.2	2	0.03	А
Westbound Through/Right-Turn	0.0	-	0.16	А	0.0	-	0.53	А
Southbound Left-Turn/Right-Turn	12.6	9	0.10	В	18.6	21	0.22	С

TABLE 4: TRAFFIC OPERATIONS ANALYSIS AT AFFECTED INTERSECTIONS – AM PEAK HOUR

Source: Wantman Group, Inc., 2020.

		2019 Analys	sis			2020 Analys	sis	
Location / Movement	Delay	95 th Percentile Queue (feet)	V/C Ratio	LOS	Delay	95 th Percentile Queue (feet)	V/C Ratio	LOS
(#7) South Lamar Boulevard / Too	omey Road	,						
Intersection	16.3	-	0.74	В	16.4	-	0.74	В
Eastbound Left-Turn	72.4	317	0.80	E	73.2	304	0.79	E
Eastbound Right-Turn	51.3	40	0.19	D	52.5	51	0.07	D
Northbound Left-Turn/U-Turn	21.9	51	0.17	С	20.3	39	0.15	С
Northbound Through	18.5	216	0.56	В	18.7	218	0.56	В
Southbound U-Turn	-	-	-	-	-	-	-	-
Southbound Through/Right-Turn	8.6	244	0.70	А	8.3	238	0.70	А
(#13) Toomey Road / Access Drive	eway							
Intersection	3.2	-	-	А	3.7	-	-	А
Eastbound Left-Turn/Through	0.4	0	0.01	А	0.3	0	0.00	А
Westbound Through/Right-Turn	0.0	-	0.12	А	0.0	-	0.14	А
Southbound Left-Turn/Right-Turn	12.8	22	0.22	В	13.5	28	0.28	В
Source: Wantman Group, Inc., 2020								

TABLE 5: TRAFFIC OPERATIONS ANALYSIS AT AFFECTED INTERSECTIONS – PM PEAK HOUR

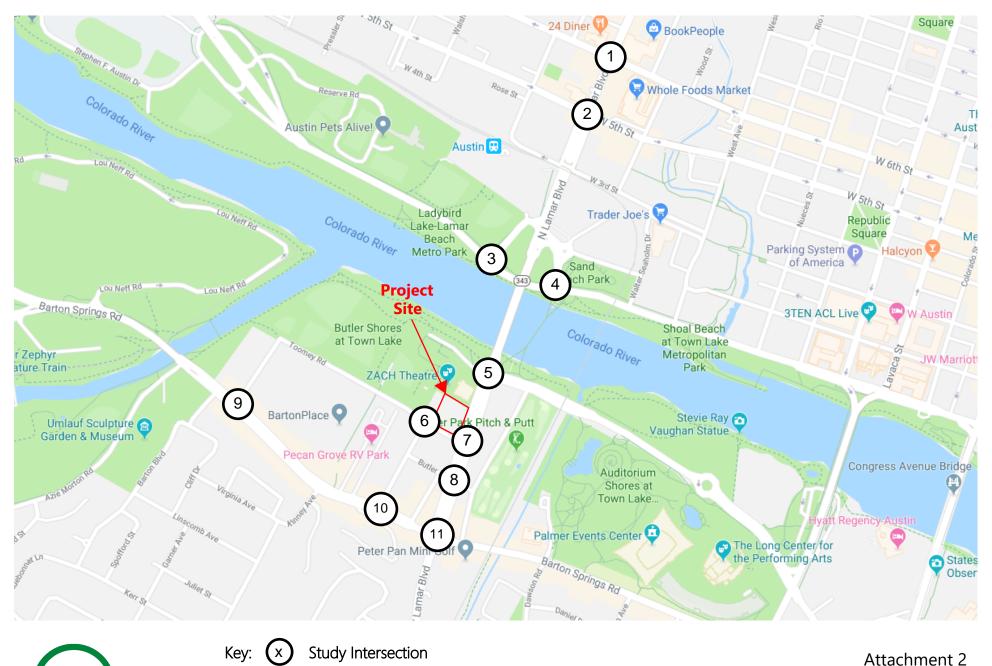
Source: Wantman Group, Inc., 2020.

Justin Good, PE, City of Austin Transportation Department January 24, 2020 Page 9 of 9

Conclusion

The change in trip generation and the elimination of the South Lamar Boulevard driveway for access to the garage change turning movement volumes at the study locations and add traffic on Toomey Road between South Lamar Boulevard and the proposed access driveway. However, those changes do not significantly change the analysis previously provided, and no additional mitigation would be necessary. The change would also not entice anyone new to use Jessie Street, Sterzing Street, and/or Toomey Street west of the Project; there is sufficient capacity to accommodate those vehicles.

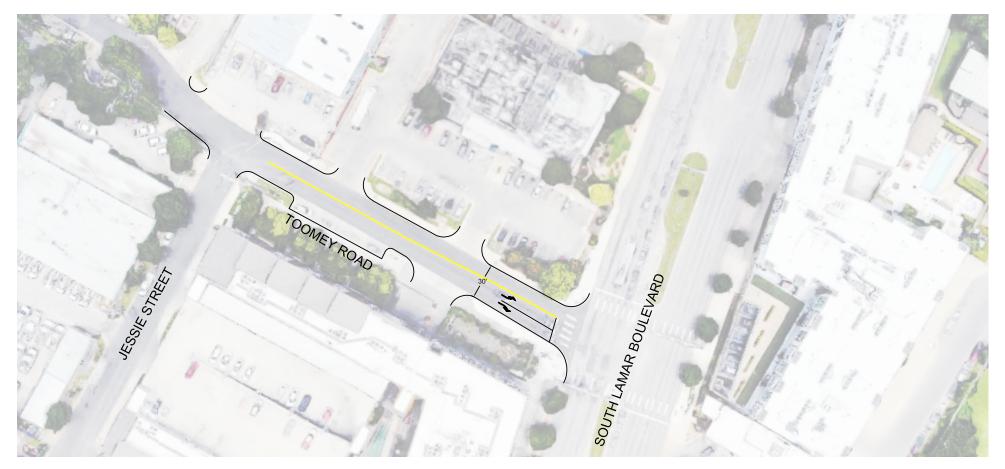
Per the previous analysis, the Project was responsible for posting fiscal towards eight improvements in the total amount of \$255,000, in addition to constructing improvements nearby; those mitigations are still applicable with this revised plan.

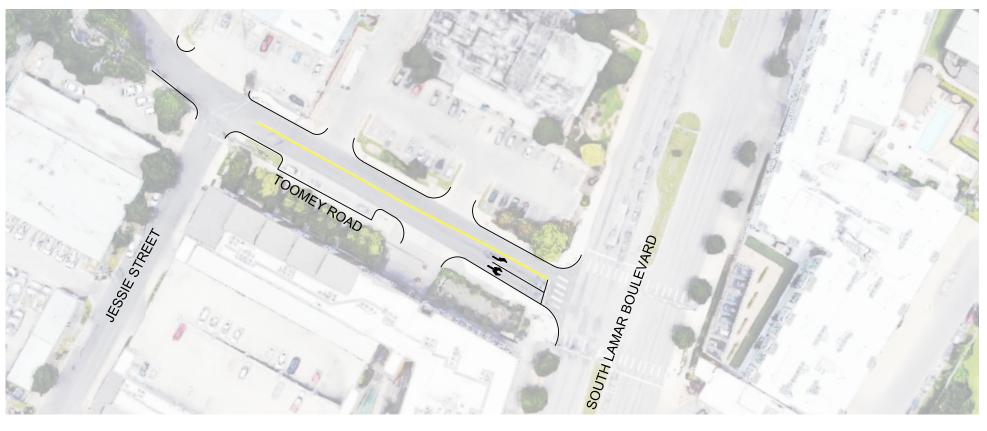

Respectfully submitted, **WGI**

9. Al

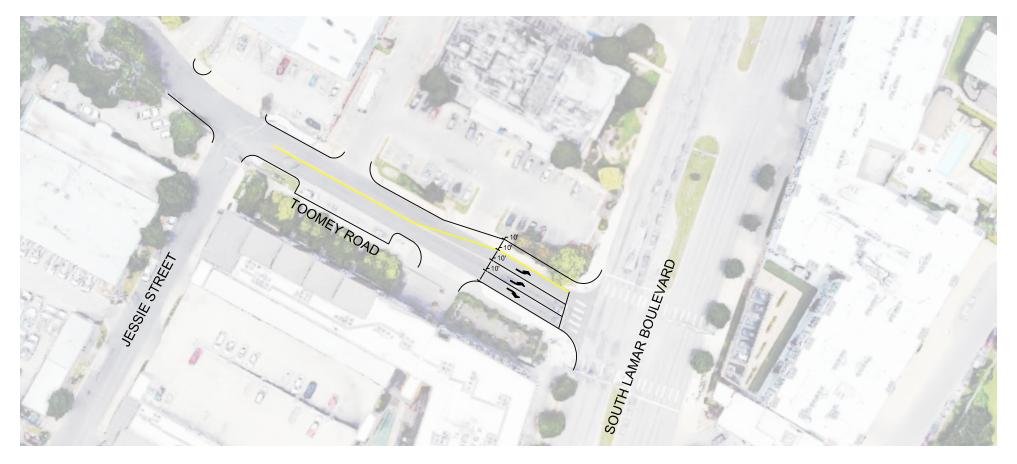
Dan Hennessey, PE, PTOE Director of Transportation Services, Texas

Attachment 1 – May 8, 2019 Approval Memo from ATD Attachment 2 – Study Intersection Map Attachment 3 – Conceptual Design (Eastbound Left-Turn Lane) Attachment 4 – Synchro Worksheets


Note: Attachment 1 is protected and cannot be included in the actual PDF attachment. It has been sent with this e-mail.


·U')

Study Area and Intersections


Existing

Re-striping for shared left-/right-turn lane

Additional Left-Turn Lane

Attachment 3 Conceptual Design (Eastbound Left-Turn Lane)

Queues 7: South Lamar Boulevard & Toomey Road

	٦	\mathbf{F}	1	1	L	Ļ
Lane Group	EBL	EBR	NBL	NBT	SBU	SBT
Lane Group Flow (vph)	254	43	82	2311	15	996
v/c Ratio	0.81	0.15	0.13	0.68	0.12	0.54
Control Delay	74.6	15.9	2.5	4.6	4.9	51.3
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0
Total Delay	74.6	15.9	2.5	4.7	4.9	51.3
Queue Length 50th (ft)	215	0	9	101	4	296
Queue Length 95th (ft)	#421	37	m9	117	m1	308
Internal Link Dist (ft)	86			221		189
Turn Bay Length (ft)	75		60		75	
Base Capacity (vph)	312	287	650	3500	124	3183
Starvation Cap Reductn	0	0	0	228	0	0
Spillback Cap Reductn	0	0	0	277	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.81	0.15	0.13	0.72	0.12	0.31
Intersection Summary						

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	\mathbf{i}	₽	1	1	L.	Ļ	~			
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR			
Lane Configurations	۲	1		ă	^	Ą	≜ ≜‡				
Traffic Volume (vph)	251	43	2	70	2034	15	937	59			
Future Volume (vph)	251	43	2	70	2034	15	937	59			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0				
Lane Util. Factor	1.00	1.00		1.00	0.91	1.00	0.91				
Frpb, ped/bikes	1.00	0.97		1.00	1.00	1.00	1.00				
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00				
Frt	1.00	0.85		1.00	1.00	1.00	0.99				
Flt Protected	0.95	1.00		0.95	1.00	0.95	1.00				
Satd. Flow (prot)	1781	1440		1704	5136	1805	4932				
Flt Permitted	0.95	1.00		0.18	1.00	0.04	1.00				
Satd. Flow (perm)	1781	1440		329	5136	83	4932				
Peak-hour factor, PHF	0.99	0.99	0.88	0.88	0.88	1.00	1.00	1.00			
Adj. Flow (vph)	254	43	2	80	2311	1.00	937	59			
RTOR Reduction (vph)	0	35	0	0	2011	0	9	0			
Lane Group Flow (vph)	254	8	0	82	2311	15	987	0			
Confl. Peds. (#/hr)	204	6	U	02	2011	10	507	9			
Confl. Bikes (#/hr)	L	5						3			
Heavy Vehicles (%)	1%	9%	2%	6%	1%	0%	4%	2%			
Turn Type	Perm		custom		NA	custom	NA	2 /0			
Protected Phases	r enn	renn	5	5	2	1	6				
Permitted Phases	4	4	12	12	2	56	0				
Actuated Green, G (s)	23.7	23.7	12	93.5	86.5	93.5	47.0				
Effective Green, g (s)	23.7	23.7		93.5	86.5	93.5	47.0				
Actuated g/C Ratio	0.18	0.18		0.69	0.64	0.69	0.35				
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0				
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0				
	312	252		650	3290	82	1717				
Lane Grp Cap (vph) v/s Ratio Prot	312	292		0.04	c0.45	0.00	c0.20				
v/s Ratio Prot	c0.14	0.01		0.04	CO.45	0.00	CU.20				
v/c Ratio	0.81	0.01		0.05	0.70	0.12	0.57				
	53.5	46.1		15.4	15.8	14.0	35.9				
Uniform Delay, d1	55.5 1.00	40.1		0.27	0.27	0.63	35.9 1.40				
Progression Factor											
Incremental Delay, d2	14.9 68.5	0.0 46.2		0.1 4.3	1.0 5.3	1.0 9.9	1.3 51.4				
Delay (s) Level of Service											
	E 65.2	D		А	A 5.2	А	D 50.8				
Approach Delay (s)											
Approach LOS	E				A		D				
Intersection Summary											
HCM 2000 Control Delay			22.5	Н	CM 2000) Level of	Service		С		
HCM 2000 Volume to Capac	ity ratio		0.71								
Actuated Cycle Length (s)			135.0	S	um of los	st time (s)			19.0		
Intersection Capacity Utilizat	ion		69.9%	IC	CU Level	of Service)		С		
Analysis Period (min)			15								
c Critical Lane Group											

	٦	-	←	*	5	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	eî 🗧		Y	
Traffic Volume (veh/h)	17	240	82	44	54	0
Future Volume (Veh/h)	17	240	82	44	54	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.75	0.92	0.92	0.25	1.00	1.00
Hourly flow rate (vph)	23	261	89	176	54	0
Pedestrians					7	
Lane Width (ft)					12.0	
Walking Speed (ft/s)					3.5	
Percent Blockage					1	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		-	-			
Upstream signal (ft)			287			
pX, platoon unblocked						
vC, conflicting volume	272				491	184
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	272				491	184
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	98				90	100
cM capacity (veh/h)	1294				527	858
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	284	265	54			
Volume Left	23	200	54			
Volume Right	23	176	0			
cSH	1294	1700	527			
Volume to Capacity	0.02	0.16	0.10			
Queue Length 95th (ft)	0.02	0.10	9			
Control Delay (s)	0.8	0.0	9 12.6			
Lane LOS		0.0				
	A 0.8	0.0	B 12.6			
Approach Delay (s)	0.0	0.0	12.0 B			
Approach LOS			D			
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		35.4%	IC	CU Level o	f Service
Analysis Period (min)			15			

Queues 7: South Lamar Boulevard & Toomey Road

	≯	\mathbf{F}	1	1	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	249	62	67	1469	2557
v/c Ratio	0.80	0.19	0.17	0.56	0.70
Control Delay	77.4	11.6	15.9	20.2	9.3
Queue Delay	0.0	0.0	0.0	0.1	0.7
Total Delay	77.4	11.6	15.9	20.2	9.9
Queue Length 50th (ft)	236	0	19	276	265
Queue Length 95th (ft)	317	40	m51	m216	m244
Internal Link Dist (ft)	86			221	189
Turn Bay Length (ft)	75		60		
Base Capacity (vph)	471	467	403	2988	3641
Starvation Cap Reductn	0	0	0	0	635
Spillback Cap Reductn	0	1	0	299	131
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.53	0.13	0.17	0.55	0.85
Intersection Summary					

m Volume for 95th percentile queue is metered by upstream signal.

	٦	\mathbf{r}	1	t	L.	Ļ	4		
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	۲	1	ä	^	р Д	ተተኈ			
Traffic Volume (vph)	249	62	64	1410	0	2335	120		
Future Volume (vph)	249	62	64	1410	0	2335	120		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0		5.0			
Lane Util. Factor	1.00	1.00	1.00	0.91		0.91			
Frpb, ped/bikes	1.00	0.98	1.00	1.00		1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00		1.00			
Frt	1.00	0.85	1.00	1.00		0.99			
Flt Protected	0.95	1.00	0.95	1.00		1.00			
Satd. Flow (prot)	1767	1577	1805	5085		5031			
Flt Permitted	0.95	1.00	0.05	1.00		1.00			
Satd. Flow (perm)	1767	1577	100	5085		5031			
Peak-hour factor, PHF	1.00	1.00	0.96	0.96	0.96	0.96	0.96		
Adj. Flow (vph)	249	62	67	1469	0.30	2432	125		
RTOR Reduction (vph)	249	51	07	1409	0	2432	0		
Lane Group Flow (vph)	249	11	67	1469	0	2555	0		
Confl. Peds. (#/hr)	243	3	07	1403	0	2000	11		
Confl. Bikes (#/hr)	I	5					40		
Heavy Vehicles (%)	2%	0%	0%	2%	0%	2%	0%		
	Perm		custom		custom	NA	0 /0		
Turn Type Protected Phases	Feim	Feim	5!	2!	20510111 1!	NA 6!			
Permitted Phases	1	4	12	Z!	56	0!			
Actuated Green, G (s)	4 26.5	26.5	103.5	75.9	50	108.5			
Effective Green, g (s)	26.5	26.5	103.5	75.9		108.5			
	20.5 0.18	20.5	0.69	0.51		0.72			
Actuated g/C Ratio	5.0	5.0	5.0	5.0		5.0			
Clearance Time (s)	5.0 3.0		5.0 3.0	3.0		5.0 3.0			
Vehicle Extension (s)		3.0							
Lane Grp Cap (vph)	312	278	382	2573		3639			
v/s Ratio Prot	0.44	0.04	0.03	0.29		c0.51			
v/s Ratio Perm	c0.14	0.01	0.09	0.57		0.70			
v/c Ratio	0.80	0.04	0.18	0.57		0.70			
Uniform Delay, d1	59.2	51.2	35.4	25.7		11.7			
Progression Factor	1.00	1.00	0.61	0.69		0.73			
Incremental Delay, d2	13.3	0.1	0.2	0.7		0.1			
Delay (s)	72.4	51.3	21.9	18.5		8.6			
Level of Service	E	D	С	B		A			
Approach Delay (s)	68.2			18.7		8.6			
Approach LOS	E			В		A			
Intersection Summary			40.0				<u> </u>		
HCM 2000 Control Delay	.,		16.3	F	ICM 2000	Level of S	Service	В	
HCM 2000 Volume to Capac	ity ratio		0.74	_					
Actuated Cycle Length (s)			150.0		Sum of los			19.0	
Intersection Capacity Utilizati	ion		75.3%		CU Level	ot Service		D	
Analysis Period (min)			15						
Phase conflict between la	ne groups								
c Critical Lane Group									

	٨	-	+	•	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	4Î		Y	
Traffic Volume (veh/h)	8	181	164	20	130	0
Future Volume (Veh/h)	8	181	164	20	130	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.92	0.92	0.92	1.00	1.00
Hourly flow rate (vph)	9	197	178	22	130	0
Pedestrians					7	
Lane Width (ft)					12.0	
Walking Speed (ft/s)					3.5	
Percent Blockage					1	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			287			
pX, platoon unblocked						
vC, conflicting volume	207				411	196
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	207				411	196
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				78	100
cM capacity (veh/h)	1367				593	845
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	206	200	130			
Volume Left	9	0	130			
Volume Right	0	22	0			
cSH	1367	1700	593			
Volume to Capacity	0.01	0.12	0.22			
Queue Length 95th (ft)	0	0	21			
Control Delay (s)	0.4	0.0	12.8			
Lane LOS	A		В			
Approach Delay (s)	0.4	0.0	12.8			
Approach LOS			В			
Intersection Summary						
Average Delay			3.2			
Intersection Capacity Utiliz	ation		29.9%	IC	CU Level c	of Service
Analysis Period (min)			15			
			10			

Queues 7: South Lamar Boulevard & Toomey Road

	٭	\mathbf{r}	1	1	L	Ŧ
Lane Group	EBL	EBR	NBL	NBT	SBU	SBT
Lane Group Flow (vph)	254	65	82	2311	15	1132
v/c Ratio	0.81	0.21	0.14	0.68	0.12	0.58
Control Delay	74.6	13.7	2.7	4.6	5.0	41.1
Queue Delay	0.0	0.0	0.0	0.1	0.0	0.0
Total Delay	74.6	13.7	2.7	4.7	5.0	41.1
Queue Length 50th (ft)	215	0	9	101	4	289
Queue Length 95th (ft)	#421	44	m9	117	m2	291
Internal Link Dist (ft)	86			221		189
Turn Bay Length (ft)	75		60		75	
Base Capacity (vph)	312	305	588	3500	124	3127
Starvation Cap Reductn	0	0	0	228	0	0
Spillback Cap Reductn	0	0	0	277	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.81	0.21	0.14	0.72	0.12	0.36
Intersection Summary						

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	۶	\mathbf{i}	₹Ĩ	1	1	L.	ŧ	~			
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR			
Lane Configurations	٦	1		Ä	^	Ą	≜ ≜				
Traffic Volume (vph)	251	64	2	70	2034	15	916	216			
Future Volume (vph)	251	64	2	70	2034	15	916	216			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0				
Lane Util. Factor	1.00	1.00		1.00	0.91	1.00	0.91				
Frpb, ped/bikes	1.00	0.97		1.00	1.00	1.00	0.99				
Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00				
Frt	1.00	0.85		1.00	1.00	1.00	0.97				
Flt Protected	0.95	1.00		0.95	1.00	0.95	1.00				
Satd. Flow (prot)	1781	1440		1704	5136	1805	4809				
Flt Permitted	0.95	1.00		0.15	1.00	0.04	1.00				
Satd. Flow (perm)	1781	1440		274	5136	83	4809				
Peak-hour factor, PHF	0.99	0.99	0.88	0.88	0.88	1.00	1.00	1.00			
Adj. Flow (vph)	254	65	2	80	2311	1.00	916	216			
RTOR Reduction (vph)	0	54	0	0	2311	0	51	0			
Lane Group Flow (vph)	254	11	0	82	2311	15	1081	0			
Confl. Peds. (#/hr)	234	6	0	02	2011	15	1001	9			
Confl. Bikes (#/hr)	2	5						3			
Heavy Vehicles (%)	1%	9%	2%	6%	1%	0%	4%	2%			
Turn Type	Perm		custom		NA	custom	NA	2 /0		 	
Protected Phases	Feilli	Feilii	5	5	2	1	6				
Permitted Phases	4	4	12	12	2	56	0				
Actuated Green, G (s)	23.7	23.7	12	93.5	86.5	93.5	50.8				
Effective Green, g (s)	23.7	23.7		93.5	86.5	93.5 93.5	50.8				
Actuated g/C Ratio	0.18	0.18		0.69	0.64	0.69	0.38				
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0				
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	312	252		589	3290	82	1809				
v/s Ratio Prot	-0.44	0.04		0.04	c0.45	0.00	c0.22				
v/s Ratio Perm	c0.14	0.01		0.06	0 70	0.12	0.00				
v/c Ratio	0.81	0.05		0.14	0.70	0.18	0.60				
Uniform Delay, d1	53.5	46.2		17.4	15.8	14.0	33.9				
Progression Factor	1.00	1.00		0.26	0.27	0.63	1.27				
Incremental Delay, d2	14.9	0.1		0.1	1.0	1.0	1.4				
Delay (s)	68.5	46.3		4.6	5.3	9.9	44.4				
Level of Service	E	D		А	A 5 2	A	D				
Approach Delay (s)	63.9				5.2		43.9				
Approach LOS	E				A		D				
Intersection Summary											
HCM 2000 Control Delay			21.6	H	CM 2000) Level of	Service		С	 	
HCM 2000 Volume to Capac	ity ratio		0.71								
Actuated Cycle Length (s)			135.0	S	um of los	st time (s)			19.0		
Intersection Capacity Utilizati	on		69.9%	IC	CU Level	of Service	;		С		
Analysis Period (min)			15								
c Critical Lane Group											

	٢	-	+	•	1	∢
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	4Î		Y	
Traffic Volume (veh/h)	18	240	82	202	75	0
Future Volume (Veh/h)	18	240	82	202	75	0
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.75	0.92	0.92	0.25	1.00	1.00
Hourly flow rate (vph)	24	261	89	808	75	0
Pedestrians					7	
Lane Width (ft)					12.0	
Walking Speed (ft/s)					3.5	
Percent Blockage					1	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			287			
pX, platoon unblocked						
vC, conflicting volume	904				809	500
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	904				809	500
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)					••••	
tF (s)	2.2				3.5	3.3
p0 queue free %	97				78	100
cM capacity (veh/h)	756				339	571
Direction, Lane #	EB 1	WB 1	SB 1			-
Volume Total	285	897	75			
Volume Left	200	0	75			
Volume Right	0	808	0			
cSH	756	1700	339			
Volume to Capacity	0.03	0.53	0.22			
Queue Length 95th (ft)	2	0.00	21			
Control Delay (s)	1.2	0.0	18.6			
Lane LOS		0.0	10.0 C			
Approach Delay (s)	A 1.2	0.0	18.6			
Approach LOS	1.2	0.0	10.0 C			
			U			
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilization			38.3%	IC	CU Level o	of Service
Analysis Period (min)			15			

Queues 7: South Lamar Boulevard & Toomey Road

	٦	\mathbf{F}	٠	1	ŧ
Lane Group	EBL	EBR	NBL	NBT	SBT
Lane Group Flow (vph)	235	107	59	1469	2556
v/c Ratio	0.79	0.30	0.15	0.56	0.70
Control Delay	77.9	10.5	14.3	20.4	8.9
Queue Delay	0.0	0.0	0.0	0.1	0.6
Total Delay	77.9	10.5	14.3	20.4	9.5
Queue Length 50th (ft)	224	0	14	282	258
Queue Length 95th (ft)	304	51	m39	m218	m238
Internal Link Dist (ft)	86			221	189
Turn Bay Length (ft)	75		60		
Base Capacity (vph)	471	500	408	2995	3666
Starvation Cap Reductn	0	0	0	0	638
Spillback Cap Reductn	0	2	0	304	133
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.50	0.21	0.14	0.55	0.84
Intersection Summary					

m Volume for 95th percentile queue is metered by upstream signal.

	٦	\mathbf{i}	1	1	L#	ţ	~		
Movement	EBL	EBR	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	۲	1	Ä	^	Ą	朴朴			
Traffic Volume (vph)	235	107	57	1410	0	2285	169		
Future Volume (vph)	235	107	57	1410	0	2285	169		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.0	5.0	5.0	5.0		5.0			
Lane Util. Factor	1.00	1.00	1.00	0.91		0.91			
Frpb, ped/bikes	1.00	0.98	1.00	1.00		0.99			
Flpb, ped/bikes	1.00	1.00	1.00	1.00		1.00			
Frt	1.00	0.85	1.00	1.00		0.99			
Flt Protected	0.95	1.00	0.95	1.00		1.00			
Satd. Flow (prot)	1766	1577	1805	5085		5009			
Flt Permitted	0.95	1.00	0.05	1.00		1.00			
Satd. Flow (perm)	1766	1577	99	5085		5009			
Peak-hour factor, PHF	1.00	1.00	0.96	0.96	0.96	0.96	0.96		
Adj. Flow (vph)	235	107	59	1469	0	2380	176		
RTOR Reduction (vph)	0	89	0	0	0	3	0		
Lane Group Flow (vph)	235	18	59	1469	0	2553	0		
Confl. Peds. (#/hr)	1	3					11		
Confl. Bikes (#/hr)		5					40		
Heavy Vehicles (%)	2%	0%	0%	2%	0%	2%	0%		
Turn Type	Perm	Perm	custom	NA	custom	NA			
Protected Phases			5!	2!	1!	6!			
Permitted Phases	4	4	12		56				
Actuated Green, G (s)	25.3	25.3	104.7	76.7		109.7			
Effective Green, g (s)	25.3	25.3	104.7	76.7		109.7			
Actuated g/C Ratio	0.17	0.17	0.70	0.51		0.73			
Clearance Time (s)	5.0	5.0	5.0	5.0		5.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0			
Lane Grp Cap (vph)	297	265	387	2600		3663			
v/s Ratio Prot			0.03	0.29		c0.51			
v/s Ratio Perm	c0.13	0.01	0.08						
v/c Ratio	0.79	0.07	0.15	0.56		0.70			
Uniform Delay, d1	59.8	52.4	33.4	25.2		11.0			
Progression Factor	1.00	1.00	0.60	0.71		0.74			
Incremental Delay, d2	13.4	0.1	0.1	0.7		0.1			
Delay (s)	73.2	52.5	20.3	18.7		8.3			
Level of Service	E	D	С	В		А			
Approach Delay (s)	66.7			18.7		8.3			
Approach LOS	E			В		А			
Intersection Summary									
HCM 2000 Control Delay			16.4	ŀ	ICM 2000	Level of	Service	В	
HCM 2000 Volume to Capac	ity ratio		0.74						
Actuated Cycle Length (s)			150.0		Sum of los			19.0	
Intersection Capacity Utilizati	ion		69.3%		CU Level	of Service	•	С	
Analysis Period (min)			15						
Phase conflict between la	ne groups								
c Critical Lane Group									

01/23/2020 AOR

	۶	-	+	×	1	~
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्भ	4		Y	-
Traffic Volume (veh/h)	5	181	164	62	161	0
Future Volume (Veh/h)	5	181	164	62	161	0
Sign Control	•	Free	Free	•=	Stop	Ŭ
Grade		0%	0%		0%	
Peak Hour Factor	0.88	0.92	0.92	0.92	1.00	1.00
Hourly flow rate (vph)	6	197	178	67	161	0
Pedestrians	Ŭ	101		01	7	Ŭ
Lane Width (ft)					12.0	
Walking Speed (ft/s)					3.5	
Percent Blockage					0.0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		NONC	NOTIC			
Upstream signal (ft)			287			
pX, platoon unblocked			201			
vC, conflicting volume	252				428	218
vC1, stage 1 conf vol	202				720	210
vC2, stage 2 conf vol						
vCu, unblocked vol	252				428	218
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)	7.1				0.4	0.2
tF (s)	2.2				3.5	3.3
p0 queue free %	100				72	100
cM capacity (veh/h)	1316				581	821
,					501	021
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	203	245	161			
Volume Left	6	0	161			
Volume Right	0	67	0			
cSH	1316	1700	581			
Volume to Capacity	0.00	0.14	0.28			
Queue Length 95th (ft)	0	0	28			
Control Delay (s)	0.3	0.0	13.5			
Lane LOS	А		В			
Approach Delay (s)	0.3	0.0	13.5			
Approach LOS			В			
Intersection Summary						
Average Delay			3.7			
Intersection Capacity Utiliza	ation		29.1%	IC	U Level o	of Service
Analysis Period (min)			15			
			15			

December 16, 2019

Justin Good, P.E. Transportation Development Engineer – Lead (South) Transportation Development Services Division Austin Transportation Department 901 S. MoPac Expressway, Building 5, Suite 300 Austin, TX 78746 (512) 974-1449 justin.good@austintexas.gov

Re: 218 South Lamar Boulevard Trip Generation Update

Dear Mr. Good,

It has come to our attention that the proposed development at 218 South Lamar Boulevard (Project) has changed intensities of land uses as compared to the previously-approved TIA. To determine if any additional mitigation might be required, Wantman Group, Inc. (WGI) has completed an updated trip generation estimate for the Project. The purpose of this letter is to provide an update on estimated trips generated based on the proposed change in land use per the Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 10th Edition.

Project Description

In the approved January 2019 TIA, the Project was proposed to be a combination of office space (167,000 square feet) and high-turnover restaurant (13,000 square feet). The Project has now been proposed to consist of 189,881 square feet of office space and 5,000 square feet of high-turnover restaurant. As such, an updated trip generation estimate was deemed necessary in order to accurately assess future trips generated to the site.

Project Trip Generation (TIA)

The ITE *Trip Generation Manual*, 10th Edition, was used for both the January 2019 TIA trip generation and the updated trip generation for the Project.

In the TIA, the Project was estimated to generate 3,181 net new daily external vehicle trips, with 294 occurring during the AM peak hour and 277 occurring during the PM peak hour. These values assumed a 15 percent discount for people walking, biking, and taking transit, no discount for internalization between the mix of uses, and no discount for existing trips on the site. **Table 1** summarizes the trip generation included in the TIA. As a result of this trip generation, the Project was responsible for posting fiscal towards eight improvements in the total amount of \$255,000.

Project Trip Generation (Update)

For the updated trip generation, the same codes and equations were used to determine the estimated trip generation. The revised Project is estimated to generate 2,685 net new daily external vehicle trips, with 246

Justin Good, PE, City of Austin Transportation Department December 16, 2019 Page 2 of 4

trips occurring during the AM peak hour and 228 trips occurring during the PM peak hour.

Table 2 summarizes the trip generation for the updated Project per the TIA methodology. The daily trip generation estimate decreased 15.6 percent, the AM peak hour trip generation estimate decreased 16.3 percent, and the PM peak hour trip generation estimate decreased 17.7 percent. As a point of reference, the previous TIA approval memo is attached to the end of this letter (**Attachment 1**).

Description	Landling	ITE	11	Daily	Week	day AN	l Peak	Weekday PM Peak		
Description	Land Use	Code	Units	Total	In	Out	Total	In	Out	Total
Office	General Office Building	710 ¹	167 ksf	1,942	155	23	178	26	137	163
Services	High-Turnover Restaurant	932	13 ksf	1,239	64	52	116	71	43	114
	Total			3,181	219	75	294	97	180	277

TABLE 1: TRIP GENERATION SUMMARY (JANUARY 2019)

Notes:

1. General Office (Category 710)

Daily: T = 13.68 * X * 0.85

AM: T = 1.25 * X * 0.85; 87% in, 13% out

PM: T = 1.15 * X * 0.85; 22% in, 78% out

Where T = number of vehicle trips, X = thousands of square feet (ksf)

2. High-Turnover (Sit-Down) Restaurant (Category 932) Daily: T= 112.18 * X * 0.85

AM: T = 9.94 * X * 0.85; 55% in, 45% out

PM: T = 9.77 * X * 0.85; 62% in, 38% out

Where T= number of vehicle trips, X = thousands of square feet (ksf)

Source: Wantman Group, Inc., 2019.

TABLE 2: TRIP GENERATION SUMMARY (REVISED PROJECT)

Description	Landling	ITE	11	Daily	Week	day AN	l Peak	Weekday PM Peak		
Description	Land Use	Code	Units	Total	In	Out	Total	In	Out	Total
Office	General Office Building	710 ¹	189,881 ksf	2,208	176	26	202	41	145	186
Services	High-Turnover Restaurant	932	5 ksf	477	23	19	42	26	16	42
	Total			2,685	199	45	246	67	161	228

Source: Wantman Group, Inc., 2019.

Respectfully submitted, **WGI**

9. M

Dan Hennessey, PE, PTOE Director of Transportation Services, Texas

Attachment 1 – May 8, 2019 Approval Memo from ATD